Master's, Doctoral and Post-doctoral Track Program: Physical and Technical Science

1. Open Doors winner's skill set

Winning the Open Doors competition:

• the ability to apply fundamental knowledge of physics—including mechanics, thermodynamics, optics, electrical engineering and electronics, as well as atomic, molecular, and chemical physics—for successful mastery of advanced disciplines in the physical and physical-technical sciences;

The winner is expected to demonstrate:

- the ability to use core mathematical knowledge to develop mathematical models for physical and engineering problems, and to interpret the results with consideration of their domains of applicability;
- proficiency in using physical models to predict the properties of systems and to solve both theoretical and applied problems in physics and engineering.

2. List of degree programs covered by the subject area

2.1. List of doctoral degree programs

- 1.3.1 Physics of space and astronomy
- 1.3.5 Physical Electronics
- 1.3.8 Physics of Condensed Matter
- 1.3.15 Physics of atomic nuclei and elementary particles, high energy physics
- 1.3.16 Atomic and molecular physics
- 2.2.2 Electronic component base of micro- and nanoelectronics, quantum devices
- 2.6.6 Nanotechnology and nanomaterials

2.2. List of master's degree programs

03.04.01 Applied Mathematics and Physics

03.04.02 Physics

04.04.02 Chemistry, Physics and Mechanics of Materials

11.04.02 Electronics and Nanoelectronics

12.04.03 Photonics and Optoinformatics

13.04.02 Electric Power and Electrical Engineering

16.04.01 Technical Physics

3.Content

Field of science 1: Mechanics

- 1. Kinematics of translational and rotational motion
- 2. Statics
- 3. Dynamics
- 4. Conservation laws
- 5. Fluid mechanics
- 6. Oscillatory motion
- 7. Solid body, elasticity
- 8. Special theory of relativity
- 9. Action principle
- 10. Lagrange formalism, Lagrange operator, Hamilton operator

Field of science 2: Thermodynamics

1. Thermodynamic systems: the concept of equilibrium

- 2. Thermodynamic functions and parameters of systems
- 3. Laws of thermodynamics
- 4. Equations of state of phases; Gibbs phase rule
- 5. Spontaneous and non-spontaneous processes; criteria of equilibrium; thermodynamic potentials
- 6. Phase transitions and phase equilibria
- 7. Surface phenomena
- 8. Statistical distributions

Field of science 3: Electrical engineering and electronics

- 1. Electrostatics. The main characteristics of charged systems and electric fields. Coulomb's Law
- 2. Electric field in continuous media. Dielectrics. Polarization. Electrical induction. The capacitor
- 3. A conductor in an electric field. The equilibrium of charges in the conductor. Electric current
- 4. Electrical circuit. Direct current. Ohm's Law. Kirchhoff's laws. The Joule-Lenz law
- 5. Interaction of currents. The magnetic field. Magnetic induction. The magnetic field in the medium
- 6. The magnetic properties of materials. Dia-, para-, and ferro-magnets
- 7. General classification of conductors
- 8. Alternating current. The impedance
- 9. Electrodynamics. Maxwell's equations

Field of science 4: Optics

- 1. Wave. Longitudinal and transverse waves. Monochromatic and non-monochromatic waves. The speed of wave propagation in the medium. Electromagnetic waves
- 2. Geometric optics. Lenses
- 3. Interference. Methods of observation
- 4. Diffraction. The Huygens-Fresnel principle. Diffraction on the hole and on the slit
- 5. Polarization
- 6. Reflection and refraction. Light absorption
- 7. Light scattering
- 8. Radiation. Photo Effect

Field of science 5: Atomic, molecular and chemical physics

- 1. Quantum wave dualism. De Broglie waves
- 2. The motion of the free quantum particle and the particle in a field. Schrodinger equation
- 3. Stationary and non-stationary states of quantum systems. Energy levels
- 4. The Rutherford atom model. The model of the Bohr atom. Atomic spectra
- 5. The distribution of electrons by energy levels. Electronic shells
- 6. Energy molecules. Molecular spectra
- 7. Atomic nucleus. Main features. Nuclear transitions and nuclear reactions. Nuclear fission and synthesis
- 9. Solid body. Crystal structure. Types of crystal lattices
- 10. Lattice defects and diffusion in a solid
- 11. Methods of structure characterization for the solid body. Spectroscopic properties of solids
- 12. Mechanical properties of solids
- 13. The thermal capacity of solids
- 14. The use of statistical distributions in solid state physics. Fermions and bosons. Particles and quasi-particles

- 15. Energy zones in crystals. Metals, semiconductors and dielectrics from the point of view of band theory
- 16. Theories of the conductivity of metals, electrolytes and semiconductors
- 17. Semiconductors and their properties. Contact properties, p-n transitions, photoelectric effect, luminescence
- 18. Scattering of electromagnetic waves by charged particles

4. Preparation materials

4.1. Recommended reading

Field of science 1. Mechanics

Reading list in English

- 1. Chen Min. Berkley Physics Problems with Solutions. New Delhi: Prentice Hall, 1974. 356 p. URL://https://archive.org/details/in.ernet.dli.2015.460169
- 2. Irodov I.E. Problems in General Physics. Part One: Physical fundamentals of mechanics. Moscow: Mir Publishers, 1988. 395 p.

URL://https://archive.org/details/IrodovProblemsInGeneralPhysics

3. Kittel C., Knight W.D., Ruderman M.A., Helmholz A.C. and Moyer B.J. Berkeley Physics Course. Vol. 1: Mechanics. NY: McGraw-Hill, 1973, 426 p.

URL://https://archive.org/details/BerkeleyPhysicsCourse

4. Savelyev I.V. Physics. A General course. Vol. 1: Mechanics and molecular physics. Part I: The physical fundamentals of mechanics. Mir Publishers. Moscow, 1989. 441 p.

URL://https://archive.org/details/savelyev-physics-a-general-course-vol-1-mir/

5. Shankar R. Fundamentals of Physics I. Mechanics, Relativity, and Thermodynamics. New Haven and London: Yale University press, 2019. 496 p.

URL://https://yalebooks.yale.edu/book/9780300243772/fundamentals-of-physics-i/

Field of science 2. Thermodynamics

Reading list in English

- 1. Chen Min. Berkley Physics Problems with Solutions. New Delhi: Prentice Hall, 1974. 356 p. URL://https://archive.org/details/in.ernet.dli.2015.460169/
- 2. Irodov I. E. Problems in General Physics, Part Two: Thermodynamics and molecular physics. Mir Publishers. Moscow, 1988. 395 p.

URL://https://archive.org/details/IrodovProblemsInGeneralPhysics

- 3. Reif. F. Berkeley Physics Course, Vol. 5: Statistical Physics. NY: McGraw-Hill, 1967. 398 p. URL://https://archive.org/details/berkeleyphysicsc05kitt
- 4. Savelyev I.V. Physics. A General course. Vol. 1: Mechanics and molecular physics. Part II: Molecular physics and thermodynamics. Mir Publishers. Moscow, 1989. 441 p.

URL:// https://archive.org/details/savelyev-physics-a-general-course-vol-1-mir/

5. Shankar R. Fundamentals of Physics I. Mechanics, Relativity, and Thermodynamics. New Haven and London: Yale University press, 2014. 496 p.

URL://https://yalebooks.yale.edu/book/9780300243772/fundamentals-of-physics-i/

Field of science 3. Electrotechnics and Electronics

Reading list in English

- 1. Chen Min. Berkley Physics Problems with Solutions. New Delhi: Prentice Hall, 1974. 356 p URL://https://archive.org/details/in.ernet.dli.2015.460169/
- 2. Irodov I. E. Problems in General Physics. Part Three: Electrodynamics. Mir Publishers. Moscow, 1988. 395 p.

URL://https://archive.org/details/IrodovProblemsInGeneralPhysics

3. Purcell E.M. Berkeley Physics Course, Vol. 2. Electricity and Magnetism. NY: McGraw-Hill Book Comp., 1965. 463 p.

URL://https://archive.org/details/berkeleyphysicsc02kitt

4. Savelyev I.V. Physics. A General course. Vol. 2: Electricity and magnetism, waves, optics. Part I: Electricity and magnetism. Mir Publishers. Moscow, 1989. 507 p.

URL://https://archive.org/details/SavelvevPhysicsGeneralCourseVol2

5. Shankar R. Fundamentals of Physics II. Electromagnetism, Optics, and Quantum Mechanics. Chapters 1-13. Yale University press, New Haven and London, 2020. 654 p.

URL: Fundamentals of Physics II

Field of science 4. Optics

Reading list in English

- 1. Chen Min. Berkley Physics Problems with Solutions. New Delhi: Prentice Hall, 1974. 356 p URL://https://archive.org/details/in.ernet.dli.2015.460169/
- 2. Crawford F.S. Berkeley Physics Course, Vol. 3: Waves. NY: McGraw-Hill Book Comp., 1968. 625 p.

URL:// URL: Waves berkeley physics course - volume 3 - Frank S. Crawford Jr.

3. Irodov I. E. Problems in General Physics. Part Four: Oscillations and waves, and Part Five: Optics. Mir Publishers. Moscow, 1988. 395 p.

URL://https://archive.org/details/IrodovProblemsInGeneralPhysics

4. Savelyev I.V. Physics. A General course. Vol. 2: Electricity and magnetism, waves, optics. Part II: Waves and Part III: Optics. Mir Publishers. Moscow, 1989. 507 p.

URL://https://archive.org/details/SavelyevPhysicsGeneralCourseVol2

- 5. Shankar R. Fundamentals of Physics II. Electromagnetism, Optics, and Quantum Mechanics. Yale University press, New Haven and London, 2020. 654 p.
- 5. <u>URL://https://yalebooks.yale.edu/book/9780300243789/fundamentals-of-physics-ii/</u>

Field of science 5. Atomic, molecular and chemical physics

Reading list in English

- 1. Charles Kittel. Introduction to Solid State Physics, John Wiley and Sons, Inc., 8th ed., 2005 URL:// http://metal.elte.hu/~groma/Anyagtudomany/kittel.pdf
- 2. Chen Min. Berkley Physics Problems with Solutions. New Delhi: Prentice Hall, 1974. 356 p URL://https://archive.org/details/in.ernet.dli.2015.460169/
- 3. Irodov I. E. Problems in General Physics, Part Six: Atomic and nuclear physics. Mir Publishers. Moscow, 1988. 395 p.

URL://https://archive.org/details/IrodovProblemsInGeneralPhysics

- 4. Landau L.D., Lifshitz E.M. Course of theoretical physics. Volume 3. Quantum mechanics: non-relativistic theory. N.Y: Pergamon press Inc., 1965. 616 p URL://https://archive.org/details/ost-physics-landaulifshitz-quantummechanics/mode/2up
- 5. Savelyev I.V. Physics. A General course. Vol. 3: Quantum Optics, Atomic Physics, Solid State Physics, Physics of the Atomic Nucleus and Elementary Particles. Mir Publishers. Moscow, 1989. 317 p.

URL://https://archive.org/details/SavelyevPhysicsGeneralCourseVol3/

6. Shankar R. Fundamentals of Physics II. Electromagnetism, Optics, and Quantum Mechanics. Yale University press, New Haven and London, 2020. 654 p.

URL://https://yalebooks.yale.edu/book/9780300243789/fundamentals-of-physics-ii/

7. Wichmann E.H. Berkeley Physics Course, Vol. 4: Quantum physics. NY: McGraw-Hill, 1971. 440 p.

URL:// URL: Berkley 4 Quantum Physics : Free Download, Borrow, and Streaming : Internet Archive

4.2 Recommended online courses

Field of science1. Mechanics

Online courses	Link	Course description
in English		
How Things	Free Course: How	This course offers an introduction to general physics
Work: An	Things Work: An	through real-world applications involving everyday
Introduction to	<u>Introduction to</u>	objects such as ice skaters and falling balls. It covers
Physics	Physics from	Newton's laws of motion, translational and rotational
	<u>University of</u>	dynamics, frictional forces, as well as the concepts of
	Virginia Class	momentum and angular momentum.
	Central	
Mechanics, Part 1	https://www.edx.or	This course is an introduction to mechanics and
	g/course/introductio	follows the standard university physics course of the
	n-to-mechanics-	first term. It describes the fundamental concepts of
	part-1	mechanics and mathematical problem solving.
Mechanics, Part2	https://www.edx.or	This advanced course is a continuation of the standard
	g/course/mechanics	physics course and provides a more in-depth
	<u>-part-2-2</u>	exploration of motion in mechanics. It covers the
		fundamental principles and laws governing
		mechanical systems, offering a comprehensive
		understanding of advanced kinematics and dynamics.
Introduction to	https://coursera.org/	The course provides a geometrical and algebraic
Mechanics	specializations/intro	description of motion, introduces the concept and
	duction-to-	nature of forces, and explores the application of
	<u>mechanics</u>	energy and momentum to solve problems in
		mechanics, including gravitational interactions and
		their associated energies.
Physics	https://stepik.org/48	This course serves as a general introduction to physics
	<u>615</u>	for students in the natural sciences and engineering. It
		covers key areas including kinematics,
		thermodynamics, and electrostatics.

Field of science2. Thermodynamics

Online courses	Link	Course description
in English		-
Fundamentals of	https://www.course	The course explains key thermodynamic concepts—
Macroscopic and	ra.org/learn/macros	temperature, thermodynamic pressure, and chemical
Microscopic	copic-microscopic-	potential—based on fundamental postulates. It also
Thermodynamics	thermodynamics	presents the essential relationships between atomic
		and molecular structures and macroscopic properties.
Ideal Gases	https://www.course	The course provides the tools to analyze the behavior
	ra.org/learn/ideal-	of monatomic, diatomic, and polyatomic ideal gases
	gases	under diverse conditions. It elucidates the distinctions
		between pure ideal gases and mixtures, emphasizing
		their practical industrial applications. The course
		examines the fundamental components of separation
		functions that describe translational, rotational,
		vibrational, and electronic motions.

Physics	https://stepik.org/4 8615	This course offers a comprehensive introduction to general physics and is designed for students in natural sciences and engineering. It covers fundamental topics including kinematics, thermodynamics, and electrostatics.
Thermodynamics	https://www.edx.or	This course is a basic introduction to
	g/course/thermody	thermodynamics, presenting the main thermodynamic
	<u>namics</u>	principles, the relationships between thermodynamic
		functions and parameters, and the processes occurring
		in macroscopic systems.

Field of science 3. Electrotechnics and electronics

Online courses	Link	Course description
in English		
Physics	https://stepik.org/4	This course serves as a comprehensive introduction
	<u>8615</u>	to general physics and is designed for students in
		natural sciences and engineering. It covers
		fundamental topics including Kinematics,
	.	Thermodynamics, and Electrostatics.
Electrodynamics:	https://www.course	This course provides a comprehensive overview of
An Introduction	ra.org/learn/electro	electromagnetism, beginning with its fundamental
	<u>dynamics-</u>	principles and progressing toward practical
	introduction	applications in Materials science, Physics, and
		Chemistry.
Electrodynamics:	https://www.course	The course presents fundamental methods for
Analysis of	ra.org/learn/electro	calculating electric fields and potentials, introduces
Electric Fields	dynamics-analysis-	the concept of polarization and the properties of
	of-electric-fields	dielectric materials, and explores how charge
		distributions can give rise to electric dipole
		moments.
Electrodynamics:	https://www.course	This course is a continuation of the electrodynamics
Electric and	ra.org/learn/electro	sequence. It introduces the fundamentals of
Magnetic Fields	dynamics-electric-	magnetostatics and builds upon previously studied
	magnetic-fields	concepts. In addition, the course explores the
		principles of electromotive force (EMF) and its
		applications in the design and operation of various
		electrical devices.
Electrodynamics:	https://www.course	This online course covers Maxwell's equations and
In-depth	ra.org/le	their application in deriving wave equations for
Solutions for	arn/electrodynamic	analyzing complex systems such as oscillating
Maxwell's	s-solutions-	dipoles. It also introduces the fundamentals of
Equations	maxwells-	alternating current (AC) circuits, including methods
	equations	for their simplification, solution, and use in practical
		contexts.

Field of science 4. Optics

Tield of belefied it optics		
Online courses	Link	Course description
in English		
Optics and	AP® Physics 2 -	This online course provides an introduction to the
Modern Physics	Part 3: Optics and	fundamentals of optics and wave phenomena. It

	3.6.1. D1 1	
	Modern Physics	offers clear interpretations of key terms and concepts,
	<u>from edX</u>	laying the groundwork for understanding the
		behavior of light and other wave-based systems.
Vibrations and	https://www.classc	This course provides a comprehensive overview of
Waves	entral.com/course/y	fundamental optical phenomena, grounded in the
	outube-ph2a-	principles of vibrations and wave theory. It covers
	vibrations-and-	the formation of various types of waves, as well as
	waves-48197	fundamental concepts such as interference,
		diffraction, and dispersion, emphasizing their
		practical applications in optics
Oscillations and	https://www.classc	This course covers the principles of simple harmonic
Waves	entral.com/course/y	oscillators and resonance, followed by an exploration
	outube-core-	of electromagnetic waves and the electromagnetic
	physics-i-	spectrum. Key topics include wave interference,
	oscillations-and-	coherence, diffraction, standing waves, and
	waves-47657	polarization. The course also introduces fundamental
		concepts of quantum mechanics, such as wave-
		particle duality, the Schrödinger wave equation,
		particles in potential wells, and quantum tunneling.

Field of science 5. Atomic Physics

Field of science 5. Atomic Physics			
Online courses	Link	Course description	
in English			
Particle Physics:	https://www.course	This course provides an introduction to general	
An Introduction	ra.org/learn/particle	physics and nuclear physics, covering complex	
	-physics	instruments used in nuclear research such as	
	or	accelerators and detectors. It includes an overview of	
	Nuclear Physics -	the Standard Model, as well as foundational concepts	
	Fundamentals and	related to matter, space, and time. The final module	
	<u>Applications ></u>	addresses contemporary topics in cosmology,	
	Mod-01 Lec-01 -	including dark matter and dark energy.	
	Brief Overview of		
	the course Class		
	Central Classroom		
Understanding	Free Course:	This course provides an introduction to quantum	
Modern Physics	<u>Understanding</u>	mechanics, atomic physics, and quantum	
II: Quantum	Modern Physics II:	information. It contrasts the approaches of quantum	
Mechanics and	<u>Quantum</u>	physics and quantum mechanics with classical	
Atoms	Mechanics and	physics, explores the role of atoms in fundamental	
	Atoms from The	physics and atomic states, and examines the nature of	
	Hong Kong	quantum information, highlighting its greater	
	<u>University of</u>	complexity compared to classical information.	
	Science and	Access to this course requires a VPN.	
	Technology Class		
	<u>Central</u>		
Nuclear Physics:	https://www.classc	This course provides an introductory yet	
	entral.com/course/y	-	
and Applications	outube-nuclear-	theoretical aspects of the modern understanding of	
	physics-	atomic nuclei and their interactions.	
Nuclear Physics: Fundamentals	Mechanics and Atoms from The Hong Kong University of Science and Technology Class Central https://www.classc entral.com/course/y outube-nuclear-	physics, explores the role of atoms in fundamental physics and atomic states, and examines the nature of quantum information, highlighting its greater complexity compared to classical information. Access to this course requires a VPN. This course provides an introductory yet comprehensive overview of both experimental and theoretical aspects of the modern understanding of	

PROGRAM

	fundamentals-and- applications-47823	
StanfordOnline:	Quantum	This course offers an introduction to quantum
Quantum	Mechanics for	mechanics and its practical applications. It is
Mechanics for	Scientists and	specifically designed to be accessible not only to
Scientists and	Engineers I	physicists but also to students and technical
Engineers - 1	Stanford Online	specialists across various scientific and engineering
		disciplines.