Bachelor's track program: Physics and Technology

1. Open Doors winner's skill set

Winning the Open Doors competition requires a firm grasp of:

- basic terms, concepts, and laws of physics;
- their theoretical and practical implications;
- their application in explaining natural phenomena.

The winner is expected to demonstrate a solid command of the following skills:

- analyzing physical systems and conditions;
- formulating typical problems in general physics using mathematical language;
- applying appropriate mathematical methods to solve these problems;
- presenting solutions in a logical and well-reasoned manner.

2. List of degree programs covered by the subject area

2.1.List of bachelor's degree programs

03.03.02 Physics

03.03.01 Applied Mathematics and Physics

11.03.04 Electronics and Nanoelectronics

12.03.01 Instrument Engineering

12.03.03 Photonics and Optical Computing

13.03.02 Electric Power and Electrical Engineering

16.03.01 Technical Physics

3. Content

Field of science 1: Mechanics

Mathematics

- 1. Numbers and calculations: Rational numbers; common and decimal fractions; percentages; infinite periodic fractions. Principal root; operations with principal roots. Power with an integer exponent; power with a rational exponent; properties of powers. Sine, cosine, and tangent of a numerical argument; arcsine, arccosine, arctangent of a numerical argument. Logarithm of a number; decimal and natural logarithms. Real numbers; arithmetic operations with real numbers. Approximate calculations; rounding rules; estimation and evaluation of calculation results. Transformation of expressions.
- 2. Equations and inequalities: Integer and fractional rational equations. Irrational equations. Systems and sets of equations and inequalities. Equations, inequalities, and systems with parameters.
- 3. Functions and graphs: Function; methods of defining a function; mutually inverse functions; even and odd functions; periodic functions. Domain and range of a function; zeros of a function; intervals of constant sign; intervals of monotonicity of a function; maxima and minima of functions; greatest and least value of a function on an interval.
- 4. Geometry: Coordinates and vectors.

Physics

- 1. Kinematics: Mechanical motion; relativity of mechanical motion; reference systems. Material point: radius vector and trajectory. Displacement. Velocity of a material point. Acceleration of a material point. Uniform rectilinear motion. Uniformly accelerated rectilinear motion. Free fall; acceleration due to gravity; motion of a body projected at an angle α to the horizontal. Curvilinear motion; motion of a material point along a circular path. Angular and linear velocity of a point; centripetal acceleration of a point.
- 2. Dynamics: Inertial reference systems; Newton's first law; Galileo's principle of relativity. Force; principle of superposition of forces. Newton's second law for a material point in an inertial

reference frame. Newton's third law for material points. Law of universal gravitation. Gravity; center of gravity of body; variation of gravity with altitude above planet's surface. Elastic force; Hooke's law. Friction; dry friction. Pressure.

- 3. Statics: Moment of force relative to axis of rotation. Center of mass of a body; center of mass of a system of material points. Equilibrium conditions for a rigid body in an inertial reference frame. Pascal's law. Pressure in liquid at rest in an inertial reference frame. Archimedes' law.
- 4. Conservation laws in mechanics: Momentum of a material point. Momentum of a system of bodies. Law of change and conservation of momentum. Work performed by a force during a small displacement. Power of force. Kinetic energy of a material point. Potential energy. Law of change and conservation of mechanical energy.
- 5. Mechanical oscillations and waves: Harmonic oscillations of a material point; amplitude and phase of oscillations; kinematic and energy descriptions; relationship between the amplitude of displacement oscillations of a material point and the amplitudes of its velocity and acceleration oscillations. Period of small free oscillations of a mathematical pendulum; period of free oscillations of a spring pendulum. Transverse and longitudinal waves; propagation velocity and wavelength; interference and diffraction of waves. Sound; speed of sound.

Field of science 2: Thermodynamics Physics

- 1. Ideal gas model in thermodynamics; ideal gas equation of state; internal energy; expression for the internal energy of a monatomic ideal gas.
- 2. Isoprocesses in a rarefied gas with a constant number of molecules; graphical representation of isoprocesses.
- 3. Thermal equilibrium and temperature; heat transfer as a way of changing internal energy without doing work; convection, conduction, radiation.
- 4. Amount of heat; specific heat capacity of a substance; specific heat of vaporization; specific heat of fusion; specific heat of combustion of fuel; heat balance equation.
- 5. Elementary work in thermodynamics; calculating work from a process graph; first law of thermodynamics; second law of thermodynamics; irreversible processes.
- 6. Operating principles of heat engines; efficiency; maximum efficiency value; Carnot cycle.

Field of science 3: Electrical engineering and electronics Mathematics

1. Basics of Mathematical Analysis: Derivative of a function; derivatives of elementary functions. Application of the derivative to the study of functions for monotonicity and extrema. Finding the largest and smallest values of a function on a segment.

Physics

- 1. Electric field: Electrification of bodies and its manifestations; electric charge; two types of charge; elementary electric charge; law of conservation of electric charge. Interaction of charges; point charges; Coulomb's law in a homogeneous substance with permittivity. Electric field; its effect on electric charges; electric field strength; point charge field; homogeneous electric field line patterns; electrostatic field potentiality. Potential difference and voltage; potential energy of charge in an electrostatic field; electrostatic field potential; relationship between field strength and potential difference for a homogeneous electrostatic field; principle of superposition of electric fields. Conductors in an electrostatic field; dielectrics in an electrostatic field; dielectric constant of a substance. Capacitor; capacitance of a capacitor; capacitance of a flat capacitor; parallel and series connections of capacitors; energy of a charged capacitor.
- 2. Laws of direct current: Electric current strength; conditions for the existence of electric current. Ohm's law for a section of a circuit. Electrical resistance; dependence of the resistance of a homogeneous conductor on its length and cross-section; specific resistance of a substance. Current sources; electromotive force (EMF) of a current source; internal resistance of a current

source. Ohm's law for a complete (closed) electric circuit. Parallel and series connections of conductors. Work of electric current. Joule-Lenz law. Electric current power. Thermal power released on a resistor. Power of a current source. Free carriers of electric charges in conductors; mechanisms of conductivity in solid metals, solutions and melts of electrolytes, gases; semiconductors; semiconductor diode.

- Magnetic field: Mechanical interaction of magnets; magnetic field; magnetic induction vector; principle of superposition of magnetic fields. Magnetic field induction lines; magnetic field line patterns of bar and horseshoe permanent magnets. Oersted's experiment; magnetic field of a current-carrying conductor; patterns of magnetic field lines around a long straight conductor, a circular loop, and a current-carrying solenoid. Ampere force: direction and magnitude. Lorentz force: direction and magnitude.
- Electromagnetic induction: Induced magnetic flux. Electromagnetic induction; induced electromotive force. Faraday's law of electromagnetic induction. Lenz's rule. Inductance; selfinduction; self-induced EMF. Magnetic field energy of a current-carrying coil.
- Electromagnetic oscillations and waves: Oscillatory circuit; free electromagnetic oscillations in an ideal oscillatory circuit. Thomson's formula; relationship between the amplitude of the capacitor charge and the amplitude of the current in free electromagnetic oscillations within an ideal oscillatory circuit.
- Law of conservation of energy in an ideal oscillatory circuit. Forced electromagnetic oscillations; resonance. Alternating current; production, transmission, and consumption of electrical energy. Properties of electromagnetic waves; mutual orientation of vectors in an electromagnetic wave in a vacuum. Scale of electromagnetic waves.

Field of science 4: Optics

Mathematics

- Numbers and calculations: Sine, cosine, and tangent of a numerical argument. Arcsine, arccosine, and arctangent of a numerical argument. Equations and inequalities. Trigonometric equations. Trigonometric inequalities.
- Geometry: Figures on a plane. Straight lines and planes in space. Polyhedra.

Physics

- Rectilinear propagation of light in a homogeneous medium; point source; light beam.
- Laws of light reflection.
- Construction of images in a plane mirror.
- Laws of light refraction; ray path in a prism.
- Ratio of frequencies and ratio of wavelengths when monochromatic light passes through the interface between two optical media.
- Total internal reflection; limiting angle of total internal reflection.
- Converging and diverging lenses; thin lens; focal length and optical power of a thin lens. 7.
- Thin lens formula; magnification given by a lens.
- Path of a ray passing through a lens at an arbitrary angle to the principal optical axis.
- 10. Construction of images of a point and a straight-line segment in converging and diverging lenses and their systems.
- 11. Interference of light; coherent sources; conditions for observing maxima and minima in the interference pattern from two in-phase coherent sources.
- 12. Diffraction of light; diffraction grating; condition for observing the main maxima during normal incidence of monochromatic light with wavelength λ on a grating with period d.
- 13. Light dispersion.

Field of science 5. Atomic, molecular, and chemical physics

Physics

- 1. Molecular physics: Models of the structure of gases, liquids, and solids. Thermal motion of atoms and molecules in matter. Interaction of particles of matter. Diffusion. Brownian motion. Relationship between pressure and the average kinetic energy of molecular translational motion in an ideal gas. Relationship between gas temperature and the average kinetic energy of molecular translational motion in a gas.
- 2. Atomic physics: Planetary model of the atom. Bohr's postulates; emission and absorption of photons during the transition of an atom from one energy level to another. Line spectra. Spectrum of energy levels of the hydrogen atom.
- 3. Physics of the atomic nucleus: Heisenberg-Ivanenko nucleon model of the nucleus; charge of the nucleus; mass number of the nucleus; isotopes. Radioactivity. Law of radioactive decay. Nuclear reactions. Fission and synthesis of nuclei.

4. Preparation materials

4.1. Recommended reading

Field of science 1: Mechanics

Reading list in English

Urone P.P., Hinrichs R. Physics. Openstax. Rice University. 2020. 836 p.URL: https://d3bxy9euw4e147.cloudfront.net/oscms-prodcms/media/documents/Physics-WEB_Sab7RrQ.pdf

Giancoli D.C. Physics. Principles with Aplications. Pearson Education Inc. 2015. 983 p. URL: https://doctor2019.jumedicine.com/wp-content/uploads/sites/10/2019/09/Giancoli-Physics-Principles-With-Applications-7th-c2014-solutions-ISM.pdf

Landsberg G.S. Elementary Texybook on Physics. Volume 1. Mir Publishers. 1988. 557 p. URL:

https://archive.org/details/LandsbergElementaryTextbookOnPhysicsVol1Mir1988/mode/2up

Field of science 2: Thermodynamics

Reading list in English

Urone P.P., Hinrichs R. Physics. Openstax. Rice University. 2020. 836 p.URL: https://d3bxy9euw4e147.cloudfront.net/oscms-prodcms/media/documents/Physics-WEB_Sab7RrQ.pdf

Giancoli D.C. Physics. Principles with Aplications. Pearson Education Inc. 2015. 983 p. URL: https://doctor2019.jumedicine.com/wp-content/uploads/sites/10/2019/09/Giancoli-Physics-Principles-With-Applications-7th-c2014-solutions-ISM.pdf

Nirenberg I., Kim J. Physics — Intermediate. CK-12 FlexBook. 2014. 578 p. URL: <a href="https://www.dropbox.com/scl/fi/48fj8gn00h43t7q866d69/Intermediate-Physics-Textbook-with-Solutions.pdf?rlkey=up34jqarnewipxqdij1z7sbyj&e=5&st=asozxx38&dl=0

Field of science 3: Electrical engineering and electronics

Reading list in English

Urone P.P., Hinrichs R. Physics. Openstax. Rice University. 2020. 836 p. URL: https://d3bxy9euw4e147.cloudfront.net/oscms-prodcms/media/documents/Physics-WEB_Sab7RrQ.pdf

Giancoli D.C. Physics. Principles with Aplications. Pearson Education Inc. 2015. 983 p. URL:

https://doctor2019.jumedicine.com/wp-content/uploads/sites/10/2019/09/Giancoli-Physics-Principles-With-Applications-7th-c2014-solutions-ISM.pdf

Landsberg G.S. Elementary Texybook on Physics. Volume 2. Mir Publishers. 1988. 447 p. URL: https://archive.org/details/LandsbergElementaryTextbookOnPhysicsVol2Mir1988

Field of science 4: Optics

Reading list in English

Urone P.P., Hinrichs R. Physics. Openstax. Rice University. 2020. 836 p.URL: https://d3bxy9euw4e147.cloudfront.net/oscms-prodcms/media/documents/Physics-WEB Sab7RrQ.pdf

Giancoli D.C. Physics. Principles with Aplications. Pearson Education Inc. 2015. 983 p. URL: https://doctor2019.jumedicine.com/wp-content/uploads/sites/10/2019/09/Giancoli-Physics-Principles-With-Applications-7th-c2014-solutions-ISM.pdf

Landsberg G.S. Elementary Texybook on Physics. Volume 3. Mir Publishers. 1989. 567 p. URL: https://archive.org/details/LandsbergElementaryTextbookOnPhysicsVol3Mir1989

Field of science 5. Atomic, molecular, and chemical physics

Reading list in English

Landsberg G.S. Elementary Texybook on Physics. Volume 3. Mir Publishers. 1989. 567 p. URL: https://archive.org/details/LandsbergElementaryTextbookOnPhysicsVol3Mir1989

Urone P.P., Hinrichs R. Physics. Openstax. Rice University. 2020. 836 p.URL: https://d3bxy9euw4e147.cloudfront.net/oscms-prodcms/media/documents/Physics-WEB_Sab7RrQ.pdf

Giancoli D.C. Physics. Principles with Aplications. Pearson Education Inc. 2015. 983 p. URL: https://doctor2019.jumedicine.com/wp-content/uploads/sites/10/2019/09/Giancoli-Physics-Principles-With-Applications-7th-c2014-solutions-ISM.pdf

4.2. Recommended online courses

Field of science 1: Mechanics

Online	Link	Course
courses in		description
English		
Physics	URL:	This course serves
	/stepik.org/course/48615/promo?search=4670275215	as an introduction
		to physics for
		students in science
		and engineering
		fields.
Mechanical	URL:	This course
principles	/stepik.org/course/65434/promo?search=4670275216	provides
		instruction on
		applying the
		principles of
		mechanics to

		practical engineering problems.	
Mechanics:	URL: https://www.coursera.org/learn/mechanics-particles-	This course	is
Motion,		designed for hi	9
Forces,		school studer	
Energy and		I I I	and
Gravity,		anyone interes	
		in	the
from		fundamentals	of
Particles to		physics.	
Planets			

Field of science 2: Thermodynamics

Online courses in	Link	Course description
English		
Physics	URL:	This course in physics is designed
	https://stepik.org/course/48615/pro	for students pursuing science and
	mo?search=4670275215	engineering, providing a
		foundation in key physical
		principles relevant to their fields.
Introduction to	URL:	This course offers an introduction
Thermodynamics:	https://www.coursera.org/learn/ther	to thermodynamics, focusing on
Transferring Energy	modynamics-intro	the fundamental principles of
from Here to There		energy transfer and conservation
		in physical and engineering
		systems.
General Physics:	URL:	This course, designed for high
Thermodynamics	https://lms.mipt.ru/local/playlist/vie	school students, introduces the
and Molecular	w.php?search&chair=0&course=53	fundamentals of thermodynamics
Physics (Dr.	29&teacher=0&semester=0&embe	and molecular physics.
Andrey Vyshnevyi,	dded=1&id=1550&searchpage=0	_
fall 2021, lectures		
and seminars)		

Field of science 3: Electrical engineering and electronics

Online courses in	Link	Course description
English		
Physics	URL:	This course serves as an
	https://stepik.org/course/48615/prom	introduction to physics for
	o?search=4670275215	students in science and
		engineering fields.
General Physics:	URL:	This course offers high school
Introduction to	https://lms.mipt.ru/local/playlist/vie	students a foundational
Physics (Prof.	w.php?search&chair=0&course=533	introduction to the core concepts
Alexey Ilyin, fall	0&teacher=0&semester=0&embedd	and principles of general physics.
2021)	ed=1&id=1552&searchpage=0	

Electricity and	URL:	This course is designed to
Magnetism	https://stepik.org/course/176257/pro	introduce the fundamentals of
	<u>mo</u>	electricity and magnetism,
		familiarizing students with the
		essential concepts and laws of
		electromagnetism.

Field of science 4: Optics

Online courses in	Link	Course description
English		
General Physics: Introduction to Physics (Prof. Alexey Ilyin, fall 2021)	URL: https://lms.mipt.ru/local/playlist/vie w.php?search&chair=0&course=533 0&teacher=0&semester=0&embedd ed=1&id=1552&searchpage=0	This course offers high school students a foundational introduction to the core concepts and principles of general physics.
Optics 101 - Translating Theory into Practice	URL: https://www.classcentral.com/course/youtube-optics-101-translating-theory-into-practice-125868	This course offers insight into key concepts in optics, including the index of refraction, dispersion, reflection, interference, and polarization.
Optics and Modern Physics	URL: https://github.com/gabboraron/edX- Physics2 Part3- Optics and Modern Physics?ysclid =mcqmg5sxbp523335843	This course covers optics and modern physics, exploring light and its interactions with various media, the atomic structure and phenomena, and contemporary applications of nuclear physics.

Field of science 5. Atomic, molecular, and chemical physics

Online courses in	Link	Course description
English		
Modern Physics	URL:	This course covers current topics
	https://www.youtube.com/watch?v=	in atomic and molecular physics.
	<u>3lTQqEehEhI</u>	
Atomic and Optical	URL:	This course provides the
Physics	https://mitxonline.mit.edu/courses/c	foundations for contemporary
	ourse-v1:MITxT+8.421x/	research in selected areas of
		atomic and optical physics,
		including the quantum-
		mechanical behavior of atoms and photons.
Understanding	URL:	This course provides an
Modern Physics II:		introduction to quantum
Quantum	https://www.classcentral.com/cours	mechanics, atomic physics, and
Quantum	e/understanding-modern-physics-2-	incentaines, atomic physics, and

PROGRAM

Mechanics and	quantum-mechanics56555	quantum information, exploring
Atoms		how the quantum world differs
		from everyday experience and
		the necessity of quantum
		mechanics; describing atomic
		structure, the stability of atoms,
		and atomic states; and examining
		the nature of quantum
		information and its greater
		richness compared to classical
		information.