Master's, Doctoral, and Post-doctoral Track Program: Chemistry and Materials Science

1. Open Doors winner's skill set by Subject

Winning the Open Doors competition requires a firm grasp of the following concepts and themes:

- fundamental principles of analytical, organic, inorganic, physical, and nuclear chemistry;
- core concepts in chemical engineering and materials science;
- theoretical foundations and methodologies used in modern chemical research;
- environmental safety and sustainability considerations in chemical processes;
- the role of chemistry in addressing current scientific and industrial challenges;

The winner is expected to demonstrate a solid command of the following skills:

- solving discipline-specific problems using theoretical knowledge and modern techniques;
- conducting and interpreting qualitative and quantitative chemical experiments;
- applying modern tools and approaches, including modelling, simulation, and data analysis;
- operating laboratory equipment and using relevant software for research and experiment design;
- demonstrating scientific reasoning and critical thinking in research contexts;
- integrating principles of sustainability and environmental responsibility into chemical practice.

2. List of degree programs covered by the subject area

2.1. List of doctoral degree programs

- 1. 4. 1 Inorganic Chemistry
- 1. 4. 2 Analytical Chemistry
- 1. 4. 3 Organic Chemistry
- 1. 4. 4 Physical Chemistry

2.2. List of master's degree programs

04.04.01 Chemistry

18.04.01 Chemical Engineering

22.04.01 Materials Science and Engineering

18.04.02 Energy and Resource Saving Processes in Chemical Engineering, Petrochemistry and Biotechnology

04.04.02 Chemistry, physics and mechanics of materials

3. Content

Field of science 1. Analytical Chemistry

- 1. Protolytic theory. Application of the law of mass action to acid—base equilibria. Calculation of pH in aqueous solutions. Buffer solutions
- 2. Complexation reactions. Basic concepts, types of coordination compounds. Equilibrium in complex formation reactions. Stability of complex compounds
- 3. Qualitative chemical analysis. Methods of performing analytical reactions. Concept of analytical signal. Main analytical groups of cations and anions
- 4. Titrimetric analysis methods. Methods for expressing solution concentration. Titration curves. Calculation of analyte mass in solution. Techniques for performing titrimetric analysis.
- 5. Types of titrimetric analysis. Acid-base titration. Complexometric titration. Redox (oxidation-reduction) titration. Precipitation titration.

Field of science 2. Organic Chemistry

- 1. Structure of organic molecules: nature of chemical bonds, electron density distribution in molecules, types of isomerism in organic compounds, concept of aromaticity in carbocyclic and heterocyclic systems
- 2. Major classes of organic compounds, methods of their synthesis and chemical transformations. Relationship between molecular structure and reactivity.
- 3. Concepts of basicity and acidity of organic molecules; factors affecting the stability of reactive intermediates (carbocations, free radicals, etc.)
- 4. Reaction mechanisms considering electronic and steric effects of reagents and substrates; regioselectivity and stereoselectivity of reactions
- 5. Natural sources of organic compounds; key laboratory and industrial methods for synthesizing major classes of organic substances
- 6. Principles of rational organic synthesis; use of protecting groups; basics of the retrosynthetic approach
- 7. Organic compounds as pharmaceuticals or functional materials, including polymers
- 8. Organic substances of natural origin; interaction of organic compounds with living systems; environmental considerations in organic chemical production
- 9. Fundamentals of molecular spectroscopy (IR, UV, NMR), mass spectrometry and X-ray diffraction

Field of science 3. Physical Chemistry

- 1. The first law of thermodynamics and its application (internal energy, enthalpy, heat and work)
- 2. Thermochemistry, heat capacities, Hess's law, Kirchhoff's equation
- 3. The second law of thermodynamics (entropy, thermodynamic potentials and characteristic functions)
- 4. Fundamental Gibbs relation, Gibbs-Helmholtz equations, Planck's postulate (third law of thermodynamics), chemical potential
- 5. Phase equilibria: heterogeneous systems, Gibbs phase rule, Clausius-Clapeyron equation. Thermodynamic properties of solutions. Raoult's laws
- 6. Phase equilibria in two-component liquid-vapor systems. Phase equilibria in condensed systems
- 7. Thermodynamics of electrochemical systems: electromotive force of an electrochemical cell, electrode potential. Nernst equation
- 8. Electrical conductivity of electrolyte solutions, ion mobility, the Debye-Huckel theory
- 9. Chemical kinetics and catalysis: the effect of temperature on the reaction rate, the Arrhenius equation, activation energy, methods for determining it
- 10. Chemical equilibria: the law of mass action and the equilibrium constant, isotherm and isobar equations of a chemical reaction

Field of science 4. Chemical Engineering and Industry

- 1. Modern chemical engineering processes and their intensification (including reactor technologies, energy saving and increasing process selectivity)
- 2. Modeling and optimization of chemical production. Mathematical modeling, software, calculation of balances and optimization of modes
- 3. Design and analysis of process flow, process chains, selection of equipment, analysis of technical and economic indicators
- 4. Physico-chemical principles of processing raw materials and obtaining chemical products (inorganic, organic and polymer raw materials, recycling, alternative resources)
- 5. Substances quality control and analysis methods in chemical technologies (chromatography, spectroscopy, thermal analysis, etc.)
- 6. Environmentally friendly and resource-saving technologies. 'Green' chemistry, waste disposal, closed cycles, emissions and purification

- 7. Materials and processes in the chemical industry (catalysts, membranes, ion exchangers, packaging and functional materials)
- 8. Risk assessment, reliability and safety of chemical production

Field of science 5. Inorganic and Nuclear Chemistry

- 1. Classification and properties of inorganic compounds (oxides, acids, bases, salts, amphoteric compounds)
- 2. Types of chemical bonds and spatial structure of molecules (ionic, covalent, metallic, coordination bonds; the valence shell electron pair repulsion (VSEPR) theory, hybridization)
- 3. Redox processes in solutions and solid phases (redox-reaction calculation methods, electron balance, application in analytical and industrial chemistry)
- 4. Equilibrium in aqueous electrolyte solutions (strong and weak electrolytes, pH, hydrolysis, buffer solutions)
- 5. Acid-base interactions and theories of acids and bases (Arrhenius, Brønsted-Lowry, Lewis; acid-base properties of complex compounds)
- 6. Complex compounds: structure, isomerism and equilibrium in solution (crystal field theory, isomerism, stability of complexes, chelation)
- 7. Fundamentals of coordination chemistry and organometallic compounds (structure and reactivity, application in catalysis)
- 8. Radiochemistry and chemistry of nuclear transformations (types of radioactive decay, kinetics and thermodynamics of nuclear reactions, nuclear fuel)
- 9. Methods of obtaining, separating and analyzing inorganic substances and isotopes (precipitation, extraction, chromatography, ion exchange, radiometric methods)
- Safety and ecology in inorganic and nuclear chemistry (radioactive waste management, protection from ionizing radiation, standards).

Field of science 6. Materials science

- 1. Modern methods of studying the materials composition and structure (X-ray diffraction analysis, scanning electron microscopy, spectroscopic methods, tomography, probe microscopy methods)
- 2. Physico-chemical principles of the materials structure formation (phase diagrams, crystallization, heat treatment, diffusion)
- 3. Mechanical, electrical, optical and other materials properties (elasticity, strength, hardness, conductivity, thermal conductivity, photosensitivity)
- 4. Structure, defects and fractures in materials (dislocations, microcracks, porosity, fracture analysis, fracture micromechanics)
- 5. Processes of obtaining and modifying materials (fusion, spraying, chemical deposition)
- 6. Statistical methods of processing and interpreting experimental data (error assessment, confidence intervals, correlation and regression analysis)
- 7. Computer modeling and calculation of material properties (molecular dynamics methods, finite-element method, modeling of processing and fracture processes)
- 8. Multidisciplinary analysis of materials and their applications (biomaterials, functional coatings, composite structures)
- 9. Experimental methods for obtaining new materials and optimizing their properties (material design, component selection, experimental planning)

4. Preparation materials

4.1 **Recommended reading**

Field of science 1. Analytical Chemistry

Sources in English

Analytical Chemistry. Gary D. Christian, 6th ed. 2004. 850 p.

URL://https://chemistrydocs.com/analytical-chemistry-6th-edition-by-gary-d-christian/

Christian G.D., Dasgupta K. (Sandy), Schug K.A. Analytical chemistry. Seventh edition. John Wiley & Sons, Inc, 2014. 826 p. URL://https://kvmwai.edu.in/upload/StudyMaterial/Analytical-Chemistry-by-Gary-D_-Christian-Purnendu-K_-Dasgupta-Kevin-A_-Schug-z-lib_org_.pdf

Harvey D.T. Analytical chemistry 2.1. DePauw University, Inc. 2016. 1122 p.

URL://https://open.umn.edu/opentextbooks/textbooks/486

Field of science 2. Organic Chemistry

Reading list in English

Clayden J., Greeves N., Warren S. Organic Chemistry. Oxford University Press, 2000. Organic Chemistry, 2012. 1265 p. URL://https://blogmedia.testbook.com/kmat-kerala/wp-content/uploads/2023/06/organic-chemistry-by-jonathan-clayden-nick-greeves-stuart-warrenz-lib.org_-847123c1.pdf

Hart H. Organic Chemistry – A Short Course. Cengage Learning, 2011. 600 p.

URL://https://archive.org/details/organicchemistry0000hart_p9s2

Jerry M. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.)/ New York: Wiley-Interscience, 2007. 1376 p.

URL://https://archive.org/details/advanced-organic-chemistry-jerry-

March

Field of science 3. Physical Chemistry

Reading list in English

Atkins P. and de Paula J. Physical Chemistry. New York: W. H. Freeman and Company, 2006. 1053 p.

URL://https://djvu.online/file/kXPWmnlehd4tA?ysclid=lzwmbbqoin691282238

Hofmann, A. Physical Chemistry Essentials. Springer, Cham., 2018. pp. 1-11.

URL://https://doi.org/10.1007/978-3-319-74167-3 1

Job G., Rüffler R., Physical Chemistry from a Different Angle Workbook. Springer Cham, 2019. 291 p. URL://https://doi.org/10.1007/978-3-030-28491-6

Keszei, E. Chemical Thermodynamics. Springer Berlin Heidelberg, 2012. 354 p.

URL://https://doi.org/10.1007/978-3-642-19864-9

Field of science 4. Chemical Engineering and Industry

Reading list in English

Kealey D., Haines P.J. Analytical Chemistry. BIOS Scientific Publishers Limited, 2002. 352 p. URL://https://tech.chemistrydocs.com/Books/Analytical/Analytical-Chemistry-By-D-Kealey-and-P-J-Haines.pdf

Moulijn J.A., Makkee M., Van Diepen A.E. Chemical process technology. 2nd ed. Wiley, 2013. 539 p.

URL://https://www.academia.edu/44116161/Chemical_Process_Technology#loswp-work-container

Norris shreve R. The chemical process industries. McGraw-Hill series in chemical engineering. McGraw-Hill Book Company, Inc. USA, 1956. 1004 p. URL:

https://www.academia.edu/34515171/McGRAW_HILL_SERIES_IN_CHEMICAL_ENGINEE RING_THE_CHEMICAL_PROCESS_INDUSTRIES

Staszak K., Wieszczycka K., Tylkowski B. Chemical Technologies and Processes. Poland: De Gruyte, 2020. 483 p. URL: https://oceanofpdf.com/authors/katarzyna-staszak/pdf-epub-chemical-technologies-and-processes-de-gruyter-stem-download/

Woolf P. J. Chemical Process Dynamics and Controls. Michigan: the University of Michigan, USA, 2006. 782 p.

 $URL: //https://open.umich.edu/sites/default/files/downloads/chemical_process_dynamics_and_controls-book_1.pdf$

Field of science 5. Inorganic and Nuclear Chemistry

Reading list in English

Atkins P.W, Overton T.L., Rourke J.P., Weller M.T., Armstrong F.A. Inorganic chemistry.

Great Britain: Oxford University Press, 2010. 851 p. Press, 2010. 851p

URL://https://chemistry.com.pk/books/shriver-atkins-inorganic-chemistry-5e/

Handbook of Nuclear Chemistry, 2nd ed. Springer, 2011. 3087 p.

URL://https://link.springer.com/referencework/10.1007/978-1-4419-0720-2

Lee J.D. Concise Inorganic Chemistry for JEE (Main & Advanced), 4ed. Chapman & Hall,

1991. 718 p. URL://https://archive.org/details/conciseinorganicchemistrybyjdlee4ed

Overton T. L., Rourke J. P., Weller M. T., Armstrong F. A. Inorganic chemistry, 7th ed. Great Britain: Oxford University Press, 2018. 967 p.

URL://https://zlib.pub/book/inorganic-chemistry-71ndlsulje40

Petrucci R.H., Herring F.G., Madura J.D., Bissonnette C. General Chemistry: Principles and

Modern Applications – 11th Edition. – Toronto: Pearson, 2017. 1496 p.

URL://https://chemistry.com.pk/books/general-chemistry-11e-petrucci-herring/

Field of science 6. Materials science

Reading list in English

Callister W.D.Jr., Rethwisch D.G. Materials Science and Engineering, Wiley, 2014. 1000 p.

URL://https://ftp.idu.ac.id/wp-content/uploads/ebook/tdg/TEKNOLOGI REKAYASA

MATERIAL PERTAHANAN/Materials Science and Engineering An Introduction by William D. Callister% 2C Jr.% 2C David G. Rethwish (z-lib.org).pdf

Ghasem N. Modeling and simulation of chemical process systems, CRC Press, 2019. 519 p.

URL://https://psv4.userapi.com/s/v1/d/Dy4Whusm7B66q3IA9OaNr74MkSKZVNVi6E-

X09TpQKTVgfAdxXp0CfnasMYr6_9IGcILsl5D_paivWnvN-

VCAwPfNLYbZB7zZ7yH02N0kKyhaFZdfsvbpg/Nayef_Ghasem.pdf

Lista L. Statistical Methods for Data Analysis with Applications in Particle Physics. Springer, 2023. 360 p. URL://https://link.springer.com/book/10.1007/978-3-031-19934-9

Martin R.M. Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, 2004. 650 p. URL://https://stevencjxie8.com/files/refs/ref12.pdf

Perez N. Materials Science: Theory and Engineering, Springer, USA, 2024. 929 p.

URL: https://link.springer.com/book/10.1007/978-3-031-57152-7

4.1. Recommended online courses Field of science 1. Analytical Chemistry

Online courses in	Link	Course description
English		
Advanced Chemistry,	https://alison.com/course/advance	The course combines
Organic and Analytical	d-chemistry-organic-and-	theoretical foundations with
Chemistry	analytical-	case-based learning in organic
	chemistry?utm_source=google&u	and analytical chemistry. It
	tm_medium=cpc&utm_campaign	covers key topics such as
	=Performance-Max_Tier-	atomic structure, electron
	4_Careers&gad_source=1&gclid=	behavior, nuclear fusion and

	Cj0KCQjwvb- zBhCmARIsAAfUI2shCcr73QiE kyByyYwYngBDjeAauHvwoy02 TtT4n8kXCGWBktBoCD4aAoz5 EALw_wcB	fission, energy conversion, electrochemistry, and food chemistry.
Basic Analytical Chemistry	https://www.clas scentral.com/co urse/chemistry- the-university- of- tokyo-basic-analytica-10332	This course introduces fundamental concepts and methods of analytical chemistry, with a focus on their application in chemistry and related fields, including the life sciences, environmental sciences, and geochemistry.
Analytical Chemistry	https://www.mo oc- list.com/course/ analytical- chemistry- saylororg	The course develops foundational knowledge in general chemistry, beginning with an introduction to key analytical terms. Students will learn concepts essential to the quantitative measurement of chemical substances, including sensitivity, detection limit, and limit of quantification.
Analitical Chemistry	https://www.clas scentral.com/co urse/swayam- analytical- chemistry-13895	The course fosters the development of skills in the application of specialized instruments and advanced techniques for the separation, identification, and quantitative analysis of unknown substances.

Field of science 2. Organic Chemistry

Online courses in English	Link	Course description
Basics of Chemistry of Heterocycles	https://stepik.org/course/137467/promo	The course aims to establish foundational knowledge in heterocyclic chemistry, with particular emphasis on key heterocyclic systems such as five-membered heterocycles (pyrrole, furan, thiophene), indole, pyridine, quinoline, and isoquinoline. For each heterocycle, the course covers electronic structure, synthetic methodologies, chemical properties, and characteristic reactions.

Chemicals and Health	https://ru.coursera.org/learn/che micals-health	The course explores the relationship between the environment and human health, focusing on chemical substances. It covers how chemicals enter the body (exposure), their biological effects (toxicology), methods for measuring chemical presence in the body (biomonitoring), and their impact on health. Additionally, the course addresses relevant policies and regulatory practices governing chemical safety.
Green Chemistry	https://openedu.ru/course/misis/G RCHM/?session=spring_2024	The course consists of several thematic modules: introduction to green chemistry, green nanomaterials, green technologies in environmental protection and non-traditional chemical processes.
Organic Chemistry	https://www.youtube.com/playlis t?list=PL0o_zxa4K1BXP7TUO7 656wg0uF1xYnwgm	A series of video presentations covering the main topics of organic chemistry.

Field of science 3. Physical Chemistry

Online courses in	Link	Course description
English		Course description
Phase transformations	https://opened u.ru/course/sp bstu/PHTRAN S/	The course introduces phase transformations occurring in alloys of binary phase diagrams.
Basics of thermodynamics	https://www.cl asscentral.com /course/thermo -dynamics- 23740	This course offers a comprehensive introduction to the fundamental principles of thermodynamics, designed for a broad academic audience. It emphasizes essential concepts and core issues while deliberately excluding highly specialized or peripheral topics. The curriculum also addresses atypical phenomena, such as stretched liquids, and incorporates experimental demonstrations to facilitate a deeper conceptual understanding.

Thermodynamics of Materials	https://www.classcentral.com/co urse/edx- thermodynami cs-of- materials-21137	The course offers a comprehensive conceptual framework for understanding the fundamental interplay between energy and entropy that governs the equilibrium states of materials. It covers the laws of thermodynamics, the concept of equilibrium, and thermodynamic potentials, presenting both classical and statistical perspectives.
StanfordOnline: Thermodynamics and Phase Equilibria	https://www.edx.org/course/ther modynamics-and-phase- equilibria	This course offers a comprehensive introduction to thermodynamics, emphasizing its fundamental role in governing phase equilibria. It is designed for a broad audience and serves as essential preparation for students beginning their studies in thermodynamics at the bachelor's, master's, or doctoral level.
Colloids and Surfaces	https://www.classcentral.com/co urse/swayam-colloids- and- surfaces-19822	The course provides an introduction to the fundamentals of colloid and nanoparticle science and discusses potential applications of these concepts.
Physical Chemistry: Help & Review	https://study.com/academy/cours e/physical- chemistry-help- review.html	The course provides a structured overview of key topics in physical chemistry, offering essential support for examination preparation, completion of assignments, or further academic and professional development.

Scientific field 4: Chemical Engineering and Industry

Scientific field 4. Chemical Engineering and Industry		
Online courses in	Link	Course description
English		
Thermodynamics of	URL://https://www.coursera.org	This course provides a
Chemical Engineering 1	/learn/chemtherm1	comprehensive introduction to
(Coursera)		thermodynamics, a
		foundational subject for
		students pursuing chemical and
		biomolecular engineering.
		Emphasizing its central role in
		assessing process viability, the

		accurace layer the amound visuals for
		course lays the groundwork for
		advanced topics such as
		reaction kinetics, mass and
		energy transfer, process design,
		and materials engineering.
		Given the growing global
		emphasis on energy efficiency
		and sustainability,
		thermodynamic principles are
		increasingly essential across
		engineering disciplines. The
		course covers the first and
		second laws of
		thermodynamics, with special
		attention to the behavior of
		non-ideal single-component
		and multicomponent systems.
		A substantial portion is
		dedicated to solution
		thermodynamics, which is
		fundamental for separation
		processes (e.g., distillation,
		extraction, and membrane
		technologies), as well as to
		chemical equilibria, which
		underpin the analysis and
		design of chemical reactions.
Numerical Methods	URL://https://ocw.mit.edu/cours	This course offers a
Applied to Chemical	es/10-34-numerical-methods-	comprehensive introduction to
Engineering	applied-to-chemical-	numerical methods used in
Engineering	engineering-fall-2015/	chemical engineering to
		address complex problems in
		transport phenomena, reaction
		systems, and molecular
		modeling. Students will learn
		and apply numerical
		techniques for solving systems
		of linear and nonlinear
		algebraic equations, ordinary
		differential equations (ODEs), and partial differential
		equations (PDEs), with
		_ =
		emphasis on applications such as heat and mass transfer, fluid
		· ·
		flow, and reaction engineering.
		Special attention is given to the
		numerical treatment of the
		Navier–Stokes equations and
		to methods used in molecular
1	1	simulations, including

		molecular dynamics and geometry optimization. All methods are taught within the context of real-world chemical engineering problems. Prior knowledge of structured programming is required.
Numerical Methods Applied to Chemical Engineering	URL://https://ocw.mit.edu/cours es/10-34-numerical-methods- applied-to-chemical- engineering-fall-2005/	This course provides an indepth introduction to modern computational and mathematical methods used in chemical engineering analysis and design. It begins with the solution of linear systems as a foundational concept in scientific computing and extends to techniques for solving nonlinear algebraic equations, ordinary differential equations (ODEs), and differential-algebraic equations (DAEs). The course also introduces probability theory as a tool for physical modeling, along with statistical data analysis and parameter estimation. Finite difference and finite element methods are presented for transforming partial differential equations—arising from transport phenomena—into solvable DAE systems. Computational techniques are integrated throughout using the MATLAB® environment for practical implementation and demonstration.
Separation Processes	URL://https://ocw.mit.edu/cours es/10-32-separation-processes- spring-2005/	This course focuses on the application of scientific and engineering principles to the separation of chemical and biological mixtures. Emphasis is placed on the fundamental understanding and analysis of key separation processes, including distillation, membrane-based separations, chromatography, and

adsorption. The primary objectives are twofold: to develop a conceptual and practical understanding of how separation processes operate, and to enhance students' ability
develop a conceptual and practical understanding of how separation processes operate,
practical understanding of how separation processes operate,
separation processes operate,
and to enhance students' ability
to apply core principles of
thermodynamics, mass
transfer, and transport
phenomena to the design and
analysis of specific separation
problems.
Integrated Chemical URL://https://ocw.mit.edu/cours This course offers a
Engineering I es/10-490-integrated-chemical comprehensive introduction to
engineering-i-fall-2006/ chemical process design,
emphasizing the development,
simulation, and optimization of
process flowsheets. Students
engage in practical
assignments involving
ABACUSS simulations, batch
operations, and separation
<u> </u>
technologies. A key component
of the course is the formulation
of a base-case design, serving
as the initial solution to an
integrated process design
challenge. Students evaluate
the economic feasibility of the
base case and iteratively
improve the design by
adjusting model parameters in
consultation with instructors
and teaching assistants. The
course concludes with the
submission of a formal
technical report presenting the
optimized design and
supporting analysis.
Integrated Chemical URL://https://ocw.mit.edu/cours This course provides students
Engineering II es/10-491-integrated-chemical with the foundational
engineering-ii-spring-2006/ knowledge and methodological
tools required for the
conceptual design of
continuously operating
chemical plants. Emphasis is
placed on the application of
industry-standard process
simulation software, such as
Aspen Plus®, to address

		contemporary engineering challenges. Students work in teams to evaluate and design a specific chemical process technology. The course culminates in the preparation and submission of a comprehensive final design report that demonstrates the integration of process modeling, design principles, and economic considerations.
Mathematical modelling and simulation of chemical engineering process	URL://https://nptel.ac.in/courses/103105215	This course offers an in-depth exploration of mathematical modeling approaches in chemical engineering, encompassing both deterministic and stochastic strategies. It provides a comprehensive theoretical framework for modeling transport phenomena, including heat transfer, mass transfer, and fluid dynamics. Emphasis is placed on the development and application of simulation techniques for these processes. The course also covers the modeling of dispersed phase systems and molecular-scale processes, equipping students with the skills necessary to analyze and predict the behavior of complex chemical engineering systems.

Field of science 5. Inorganic and Nuclear Chemistry

Online courses in	Link	Corse description
English		
Introduction	https://ru.coursera.org/learn/basic-	The course is designed to
to	chemistry	establish foundational
Chemistry:		knowledge in chemistry,
Structures and		emphasizing core concepts
Solutions		including atomic and
		molecular structure, solution
		chemistry, phase equilibria,
		and quantitative problem-
		solving techniques. It equips
		students with the essential

General Chemistry: Concept Development and Application	https://ru.coursera.org/learn/general-chemistry	theoretical and practical skills necessary for advanced study in chemistry and related disciplines. The course introduces key concepts and approaches in Inorganic Chemistry.
Introduction to Chemistry: Reactions and Ratios	https://ru.coursera.org/learn/intro- chemistry	The course focuses on the development of core competencies in Chemistry. The course includes fundamental concepts related to chemical reactions, stoichiometry, the periodic table, and chemical problem solving to prepare students for further study in chemistry.
Chemistry	https://ru.coursera.org/learn/chemistry-1	The course provides students with a conceptual framework for understanding atomic structure, periodic patterns, compounds, reactions and stoichiometry, bonding and thermochemistry.
Advanced chemistry	https://www.coursera.org/learn/advanced-chemistry	The course aims to build foundational knowledge in Chemistry.
Introducti on to Coordinati on Chemistry	https://stepik.org/course/171575	The course is designed to develop students' understanding of the fundamental principles and properties of coordination compounds, highlighting their significance and applications in everyday life.

Field of science 6. Materials sciences

Online courses in	Link	Course description
English		
Materials Science	URL://https://www.coursera.org/special	The course focuses on atomic
for Technological	izations/materials-science-for-	bonding and crystal structure,
Application	technological-application	providing an in-depth
(Coursera)		examination of the role that
		materials play in modern
		engineering practice.
Fundamentals of	URL://https://www.coursera.org/learn/f	Materials science and
Materials Science	undamentals-of-materials-science	engineering currently support
(Coursera)		most industrial sectors

		including aerospace, telecommunications, transportation, architecture, infrastructure, etc. Fundamentals of Materials Science is a core module for undergraduate students majoring in Materials Science and Engineering. This course takes an integrated approach to combining metallic, ceramic, and polymeric materials, enabling students to gain a deep understanding of the relationship between composition, microstructure, processing, and properties in materials science.
Materials Laboratory	URL://https://ocw.mit.edu/courses/3-014-materials-laboratory-fall-2006/	The laboratory course integrates experimental investigations illustrating core principles of quantum mechanics, thermodynamics, and material structure with rigorous oral and written technical communication practice. Key topics include: empirical examination of the relationships among energetics, bonding, and material structure; application of these principles using advanced materials characterization techniques; demonstration of the wavelike behavior of electrons; practical training in quantifying energy (Differential Scanning Calorimetry, DSC), bonding (X-ray Photoelectron Spectroscopy, XPS; Auger Electron Spectroscopy, AES; Fourier Transform Infrared Spectroscopy, FTIR; Ultraviolet-Visible Spectroscopy), and structural order (X-ray scattering) in condensed matter; and the

		exploration of structural phase transitions and structure–property correlations through hands-on materials case studies.
Fundamentals of Materials Science	URL://https://ocw.mit.edu/courses/3-012-fundamentals-of-materials-science-fall-2005/	This course focuses on the fundamental concepts of structure, energetics, and bonding that form the basis of materials science. It introduces thermodynamic functions and laws governing equilibrium properties, linking macroscopic behavior to atomistic and molecular models of materials. The course examines the role of electronic bonding in determining the energy, structure, and stability of materials, alongside quantum mechanical descriptions of interacting electrons and atoms. Key topics include thermophysical properties such as heat capacities, phase transformations, multiphase equilibria, chemical reactions, and magnetism; symmetry properties of molecules and solids; and the structure of complex, disordered, and amorphous materials. It also covers tensors and symmetry-imposed constraints on physical properties, as well as structural determination through diffraction techniques. Applications discussed include engineered alloys, electronic and magnetic materials, ionic and network solids, polymers, and biomaterials.
Phase Diagrams in Materials Science and Engineering	URL://https://nptel.ac.in/courses/11310 4068	Phase diagrams are fundamental to materials science and engineering, with applications spanning structural to functional materials, including

		electronic and magnetic
		systems. This course aims to
		familiarize students and
		researchers with binary and
		ternary phase diagrams and
		the associated microstructures
		of various materials.
		Emphasis is placed on
		understanding the critical role
		of microstructure in
		determining material
		properties and on linking
		phase diagram information to
		microstructural evolution.
Materials Science	URL://https://nptel.ac.in/courses/11210	This course addresses both
Whaterials Science	8150	fundamental and applied
	0130	aspects of materials science.
		It encompasses the study of
		atomic structure, crystalline
		solids, and defects in
		*
		materials, alongside the
		mechanical properties of
		metals and their strengthening
		mechanisms. Key topics
		include diffusion, phase
		diagrams, material failure,
		and processing techniques for
		metals, ceramics, and
		polymers. Specialized
		modules cover composites,
		corrosion, and the electrical,
		thermal, magnetic, and
		optical properties of
		materials. The course
		concludes with an
		examination of the economic,
		environmental, and social
		implications of material
		usage. It is designed for
		engineering students and
		professionals aiming to
		deepen their knowledge of
		materials and their practical
		applications.
Materials Science	URL://https://nptel.ac.in/courses/12210	This course covers key
	2008	aspects of materials science,
		including crystal structures,
		lattice defects, phase
		diagrams, and diffusion
		mechanisms. It addresses
		modiumini, it addicases

ПРОГРАММА ПРОФИЛЯ

	plastic deformation and strengthening mechanisms, phase transformations, with particular emphasis on steel
	heat treatment, and electrical properties of materials such as conductors, semiconductors, and superconductors. The course is designed for engineering students and professionals.
	F